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Abstract

The finite dimensional Hamiltonian systems related to two dimensional Ag), C 1(1) and Dl(f_)l Toda equations are obtained and
their Liouville integrability is proved. Any solution of these Hamiltonian systems will give a solution of the corresponding two
dimensional Toda equations.
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1. Introduction

The two dimensional Toda equations are important integrable systems which have been studied widely. A two
dimensional Toda equation corresponding to a Kac—-Moody algebra g of affine type can be written as

n n
Wi, xr = Ak €Xp chiwi — Apvg exp Zco,-w,- (k=1,...,n) (1
i=1 i=1
where C = (c;ij)o<i,j<n 18 the generalized Cartan matrix of the Kac-Moody algebra, v = (v, vy, ..., vn)T is a
non-zero vector satisfying Cv = 0, and Ag, A1, ..., A, are real constants [1,2].

The two dimensional periodic Toda equation (Al(l) Toda equation) has been studied in various ways, such as by
the Darboux transformation method [3-5], loop group method [2], nonlinear constraint method [6,7] etc. The Toda
equations with other boundary conditions have also been studied [8—10]. In particular, the Darboux transformations
for two dimensional Ag), (o l( D and Dﬁ_)l Toda equations were obtained in [11,12].

As one of the useful methods, the nonlinear constraint method is effective in finding quasi-periodic solutions, and

has been applied to many integrable nonlinear partial differential equations, especially to the equations with 2 x 2 Lax
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pairs in 1 + 1 dimensions [13—17] or 2 + 1 dimensions [18-22]. When g = Al(l), the Lax pair of the two dimensional
Toda equation has a reality symmetry and a cyclic symmetry of order /, and the finite dimensional integrable systems
related to it were studied by [6,7].

The one dimensional Toda equations are finite dimensional Hamiltonian systems, while the two dimensional Toda
equations are infinite dimensional Hamiltonian systems. In this paper, we shall give finite dimensional Hamiltonian
systems related to the two dimensional Toda equations. Any solution of these Hamiltonian systems will give a solution
of the corresponding two dimensional Toda equations. We consider an N x N integrable system which corresponds to
the two dimensional Toda equations with Kac—-Moody algebras g = Ag), Cl(l) and Dﬁ)l. It has a unitary symmetry,
a reality symmetry and a cyclic symmetry of order N. The number of independent functions in these N x N systems
isonly [N /2] or [N/2 — 1]. To get the Lax operator of the finite dimensional Hamiltonian systems related to this two
dimensional system, we need to consider all these symmetries in the construction.

In Section 2, the linear system containing the two dimensional Ag), Cl(l) and Dl(i)l Toda equations is presented.
In Section 3, the finite dimensional Hamiltonian systems are derived in terms of the Lax operator L()). Then the
involution of the set {tr(L* (1))}, which will generate the conserved integrals, is proved in Section 4. The expressions
for the conserved integrals are written down in Section 5 and the Hamiltonians are expressed in terms of them.
Finally, in Section 6, the functional independence of sufficiently many conserved integrals for Liouville integrability
is proved. This gives the Liouville integrability of these finite dimensional Hamiltonian systems, and each solution of

these Hamiltonian systems is a solution of the corresponding two dimensional Toda equation.
2. Linear system

Let N be a given integer with N > 2. Throughout this paper, for any N x N matrix A or any N dimensional vector
v, and for any integers j and k, we define Ajx = A and v; = vj» where j = j'mod N and k = k" mod N. Hence
the indices in this paper can always be arbitrary integers. In particular,

Sk = {(1) i)ftljlerwlis; pmod @
Let o = e?™/N 0 = diag(l, 0!, ..., 0"V *1). Let m be an integer, and K = (K jx)nxn With Kjx = m—ji;
then K is symmetric and
QK = o™ 2K 0. (3)
Consider the Lax pair
W®=Ux,t,\)® =({ArJ + P(x,1)) D,
D=V, t,)P=>1)"'0x, 1P @
and its integrability conditions
Ox =[P, 0], P +1J,01=0. &)
Here
J = (i, j—1)NxN> P = (pi(x,1)8;;)NxN» 0 =(q;(x, )8 j+1)NxN (6)

and U(x,t, 1), V(x, t, A) satisfy the relations
U(xatv)\')zU(-xvta _)_")a V(xvta)")zv(xatv_)_\')’
QUx, 1, )27 = Ux, 1, wh), QV(x, t, )27 = Vx, 1, w)), (7)
KU, t, VK" = —(U(x, 1, )", KV(x,t, DK~ = —(V(x, 1, 1)*.
These relations are equivalent to
QPR =P, RINT =wl, RoN'=wlg,

3
KPK~'=—pPT, KJK ' =JT, KoKk~ '=0T.
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Written in terms of the components of the matrices, (8) becomes
Pm—j = —Djs qm—j—1=q;- )
The integrability condition (5) can also be written in terms of the components as
4jx = (Pj+1 = Pj)qjs Pji=4j-1—4;. (10)

By direct calculation according to (7), we have the following lemma.

Lemma 1. Suppose u € C.

1) If &(x,t, ) is a solution of (4) for A = u, then ©(x,t, u) is a solution of (4) for A = — L.

@{i) If D(x,t, u) is a solution of (4) for . = u, then for any integer k, 2k P(x, 1, W) is a solution of (4) for
A= ok .

(i) If D(x,t, w) is a solution of (4) for . = w, then ¥(x,t) = K ®(x, t, ) is a solution of the adjoint Lax pair
for A =

U =—GaJ +P)w, v =—@Gp)"'oTw. (11)
Remark 1. For any N x N matrix A = (4;;), let
A= (AiDi<ijen = (Aip1,j+1)1<i, j<N-

Since f)ij = iy j1 = a)_lﬂij, K = o™ 2K implies 2*K = o™ *K . Under the transformation
2,K,J,P,Q,m) — ({2, 13, f, f’, Q, m — 2), (3), (5) and (8) still hold. Therefore, we only need to consider
the casesm = 0 if N isodd orm = 0, 1 if N is even.

According to this remark, there are essentially three kinds of equations in the system (4).
MDN=2n+1isodd,m =0

From the symmetries (9) and the evolution equations (10), there exist u1, ..., u, such that
pi = —pum+1—i = uix (1 <i=<n), pyup1 =0,
gi = qan—i = A"t (1 <i<n-—1), (12)
qn = Anei2unv q2n = q2n+1 = Age"!
where Ao, Ay, ..., A, are real constants. If n > 2, the evolution equations are
Ui, xr = A()eu] — Aje2T, Up xt = Ay_getnTin=t — Ane—2'4n’ (13)
Wjr = AjeV 707 — At 2 < j <n—1).
Letw; = —(uy 4+ - 4u;) (j = 1,...,n), then (wy, ..., w,) satisfies (1) with g = A, If n = 1, the evolution
equation is u o, = Age"! — Aje~2*1, which corresponds to g = A;z).
()N =2n+2iseven,m =0
Di = —Pay2—i =Uix, ((1=i=<n), Dnt1 = P42 =0,
qi = qony1—i = AT (1 <i<n-—1), (14)
qn = 4n+1 = Ane_unv q2n+1 = q2n+2 = AOeM1 .
If n > 2, the evolution equations are
Ul,xt = AOeu1 - Aleuz_ula Un,xt = An—leun_un_l - Ane_u"a (15)
Ujx =Aj_1e" 7 — AT 2 < j<n—1).

Letwj =—@i+---+u;j)j=1,...,n—1and w, = —%(ul + -+ + uy); then (wy, ..., w,) satisfies (1) with
g= C,(,l). If n = 1, the evolution equation is u1 x; = Age*! — Aje™"!, which corresponds to g = Agl).
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(III) N =2niseven,m = 1

Pi = —Pu+1-i =Uix, (1=i=<n),
gi =i = AT (1<i<n—1),  qu=Awe ", g = Age™. (16)
If n > 2, the evolution equations are
Ul xt = Aoe2”‘ - 14161427’4l , Un,xt = An—leuniunfl - An672un’ A7)
Uiy =Aj_1e71 — AT 2 <j<n—1).
Letw; = —(uy + - +u;) (j = 1,...,n), then (wy, ..., w,) satisfies (1) with g = DS If n = 1, the evolution
equation is u yr = Ape?"t — Aje~ 21 which corresponds to g = Agl).
3. Finite dimensional Hamiltonian systems
Now take r non-zero real numbers Aq, ..., A, such that )L%, A )»% are distinct. Let Hy, = (¢1q4, - - -, q&;\/w)T be a
column solution of the Lax pair (4) with A = A. Then the ¢4 ’s satisfy
0dju =ira@jtia + Pibjar  hja = (ra) 'qj 10j 1.0 (18)

Write {¢ro} as the ordered set {¢i1,...,P1r, D215 P2y .vs ONT, ..., ONr}. We shall rewrite (18) as
Hamiltonian equations by finding certain constraints

uj=uj({$ra) G =1,....n). (19)

Then p;’s and g;’s are also represented as functions of {¢} and their derivatives.
First, considering Lemma 1, assume that under constraints (19), the systems of ordinary differential equations in
(18) have a Lax operator L(1) in the form

r N—1
a ! %ol by 5 T ol
L} =J+ —(HH K — ——(H,H_ ('K 20
" O;;(k—wlxa o rtolrg O ) e

where the g;’s and b;’s are complex constants to be determined, that is, L satisfies

L,=[irJ+ P, L], L, = &[Q, L] 2D

for certain P and Q expressed by (19).
The first term of L(}) is J. Comparing with the expression for U(A), we want that iAL(A) satisfies the same
relations as U (A) does in (7). That is,

L) = L(-21), QLMW = wL(w)), KLOOWK ™' = LO)*. (22)

Substituting (20) into them, we get a; = 0" 2a;_|,an—; = a;, by = a;. Hence by = a; = a)(’"’z)[/c/N where « is
a real constant.

Now we prove that (21) holds.

For the monomials in (20), we have

(' H H 'K, =i ag[J, Q' Hy HXQ'K) + [P, 2 Hy HY Q'K ). (23)
Here we have used the relations (8). Similarly,

(' HLH,2'K), = —io)h[J, X H H, 'K+ [P, Q'H, H, 2'K]. (24)
Hence,

Ly —[iAJ+P,L1=[J,P—P] (25)
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where
r N-—1 o
(@" P HH Q'K — o™ H H K.
a=1 [=0

ZIE'

Using the identity

N—

—_

oM = Néro,
=0

we get the entries of P as

. r N—1 N
A 1K o
Pjp = — Z Z Z =IO (Hy HY) js — (Ho Hy)sj) K
a=1 =0 s=1

2

.
=ik Z(HaHJ)j,m—ijk — ik Z(HaH;)m—j,j(Sjk
a=1 a=1

=ik ((Pm—j. D)) — (D}, D)) 8k

Hereafter, we use the symbol (vy, vp) = v’fvz for two vectors.
Therefore, the first equation of (21) holds under the constraint

axujzijiK«@m j’¢> <@],@m ]>)

Now we consider the second equation of (21). Like for (25), we have

R . — (m 3)l _
J=dw= % Z - (V' H H 'K + QH HL0'K),
o

Jik =« Z — ((HoH}) jm—1—j + (Ho HY)m—1—},j) 8j k1.

-
1
9]' =K Z o ((HozH;)j,m—l—j + (HozH;)m—l—j,j)

= i ((Pno1ojs A7 0) + (0, A7 By ).

[Q,J — J1=0isequivalent to (1 — 6;)q; = (1 — 6;41)q;+1. Hence, [Q, J — J] = 0 implies that

gi=0-0)"'F

for a certain function F. If this is true, then the second equation of (21) holds.

Remark 2. Since 6,,_1—; = 0}, the identity g,,_1—; = g; holdsforall j =1, ..., N.

1041

(26)

27)

(28)

(29)

(30)

(31

(32)

(33)

From (12), (14) and (16), 192 - - - gy = A1A2 - -- Ay holds if we define Aj = Ay4—1—; for j > n + 1. Hence

N 1/N
=<1‘[A,-(1—9j)> .
j=1

(34)
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Hereafter, we always consider the problem in the region A;(1 —6;) > Ofor j =1,2,..., N.
The integrability of (21) is just (5), which implies that (29) and (33) are compatible.
In summary, we have

Theorem 1. Suppose pj,q; (j = 1,..., N) are given by (29) and (33) respectively where the 0;’s are defined by
(32) and F is defined by (34). Let

K <& N-1 wm=21 ; ; wm=21 — —
LA)=J+ — — OHH'Q?K — ——('H,H 'K 35
() N;; A—wlrg T Atalrg )

where k is a real constant; then the Lax equations (21) hold.

Note that L (1) is real when A is purely imaginary.
Now we write down the expressions for the u;’s in terms of {¢ 4, ¢} according to (12), (14) and (16). They are:

il
Case (I): e = F/ [ [ A (1 —00)7", (36)
k=0
.]71
Case (ID: ¢ = F/ [T A =607, 37
k=0
A T § 1 Uit
Case (II): e = F/72A 7 (1—600) 2 [[A'A =007 (=1.....n). (38)
k=1

Here the product is 1 if its upper bound is smaller than its lower bound. Under the above constraints, the system (18)
becomes

ax(bja = i)\a¢j+l,a + ik ((¢m7j7 @j) - <¢j’ Qsmfj)) (bjot, (39)

1
N Ty
<l_[ A (1= k( P11, A7 D) — (D, A_ldsm—l—l»)
I=1

dypio =
) e (1= k(Py—j, A7V Dj_1) — k(Bj_y, A1 By_j))

bj-1.a- (40)
Theorem 2. If {¢;q} is a solution of (39) and (40), P = (p;d;j), O = (qidi j+1) are given by (29) and (33)
respectively, then (P, Q) satisfies the nonlinear partial differential equations (5).

Proof. By (29) and (39),

Pjt =qj-10j-1 —qj0; =q;j(1 =0;) —qj—1(1 —=0;—1) +qj—1 — qj

=qj-1—4j- 41
On the other hand, by (32) and (40),
Ojx = (pj+1 — pj)(1 —0;). 42)
Hence
6; 1 4 4
Ing) = —2% 4 L
U NI;I—@k
|
= Pj+l _1’1+NZ(1”<+1 — D) =Pj+1 —Pj- (43)
k=1

This leads to (10), which is equivalent to (5). The theorem is proved. O
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From this theorem, we know that any solution of (39) and (40) gives a solution of the two dimensional Agl), C,gl)
or D,(l +)1 Toda equations according to the suitable choice of N and m.
Now we consider the Hamiltonian structure of (39) and (40). Considering (iii) of Lemma 1, we can take the

symplectic form in RN with coordinates {¢; jas ® ja) as

r N
0=1) "> "dp;y Adpy_ja. (44)

a=1 j=1

and then the Poisson bracket of two functions f and g on R?V" is

dg  df
{fed= Zl ]Zl ( P ¢m T 85,,,_,,,0,) : (45)
Suppose the systems in (18) are the Hamiltonian equations
10,j0 = _onr —i0x¢ ;o = o (46)
OPm—j o 0Pm—j,a
and
101¢jo = f)i, —i0,6 ;o = _OHT (47)
0Pm—ja Om—j.a
(j =1,..., N) respectively; then we can integrate them to get the Hamiltonians in the following theorem.

Theorem 3. The systems of ordinary differential equations (39) and (40) are Hamiltonian systems with the
Hamiltonians

N N
K 2
_Z<¢m—ja/1¢j+1 _ZZ Dy — ]7 (dsja Dy — ])) ’ (48)
j=1 j=1
‘ N
H = -——F
2k |
N (N v
= - (]‘[ Aj (1 k(B A7 D)) —K@j,A—qumlj))) (49)
j=1
respectively.

Note that both H* and H' are real-valued functions. We shall show in Section 5 that H* and H' are in involution.
Therefore, the two Hamiltonian flows given by H* and H' are compatible.

4. Involution of conserved integrals

We shall show that tr(L¥(1)) (k = 1,2,...) generate a series of quantities which are independent of A and will
serve as conserved integrals of the Hamiltonian systems given by H* and H'.
For any integer k, denote as {k} the remainder of k divided by N.

Lemma 2. For any integer p, complex numbers A and ¢ with ¢V # AV,

L pi NP g N=1={p)
—wlh NN

(50)
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Proof. When || > [A],

= ovi > =1 . N A\ NP N1
_ (= (U-pj _ * 2 o)
Z_ —wix Z_ Z_ g( > = Q. (c) N Gb
=0 =0 j=0 I—p=0mod N

Both sides of (50) are meromorphic functions of {. Hence (50) holds identically outside the poles. O

Theorem 4. For any complex numbers A, . and any positive integers k, [,

{tr(L* (), (L' ()} = 0. (52)

Proof. In this proof, we use «a, b, j, p, q, s for the indices from 1 to N and o for the index from 1 to r. By the
definition of the Poisson bracket,

i k 1 _ k—1 8L(A)) ( -1 dL (M))
2 {tr(L"(X)), tr(L" (n))} = ;tr (L (/\)—deo L™ (n )8¢m -

Z dL(w) - dL(A)
" ( ( ) ¢ ) . < ()L) a¢m—j,a ) (53)
By the expression (35),

(m=2)p —(a—1)p

k—1 4, 0L Kok w 2 —D)
(L »= %) > T W (—A_MU 8japsow™ VP

a,b,p,s

(m=2)p ,,—(a—Dp
w w - (s—
- ——————————¢udjsw (s ””) 8s.m—b

A+ wP Ay
w®=pr _ K wMm=Jji=ap _
_ k—1 _ k—1 L
= - Z(L ()\))bj ﬁ(ﬁm—b,a N ;(L ()‘))m—j,a A+ wPhy ¢ao
wm—a— /)p wm—a=jp
_ K k—1 k—1 z
= Z(L N b Z(L Wi Pao
= Agm - BU”. (54)
Likewise,
_ dL(w) w1
ir (U 5 ) = Z(L’ )y
m—j,o o
(j—bq , ,
_ w
— N Z(L[ I(M))m—b,m—jm(pb" = A;JU) _ Bé./g)’ (55)
b,q o
1, OL(w) wm=b=ia
-1 -1
tr (L W55 Z(L Wb Pbo
-1 b= (o) _ pljo)
_NZ(L (M))m—jbm@w:A 33 s (56)
b.q
dL(\) wl=ap
k—1 — k-1
tr (L Mgg M) Z(L M) ja3— = a
(j—a)p . .
w
— N Z(Lk 1()\'))’" a,m— J)\,—f——p)\,(b = Aflfa) _ Bi]U)‘ 57)

a,p
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L0 — Z

ctll

r N=1m=2)

P

a=1 1=0

then

Ly =J+LD -~

r N—1 wm=21
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Q’ Hy H 'K
A —wl)
(58)
= 'H,H 'K
A+ olhg * e
L®. (59)

From (22), tr(LK(w))) = o *tr(LK (1)), tr(LK(—1)) = tr(L*())). Hence the theorem holds for ™ = (£1)N. We
only need to prove the theorem for ™V # (£A)V.

Using the identity
1

(A —€10PAho) (L — 2009 A5) - €lwPu — ewii

1 ()\ elw? _ el ) ’ (60)

— €1wP Ay n— 2wy

for €1, € = 1 and Lemma 2, we have

(o) 4 Go) _
Y AYAYY =

o

_ o K _ _ 3 — 1 —{p—
3 BB — v ;@’ L) jp @D G L 0y a0 N1
o

Hence

(o) 4 (o)
D (AY7A77 -

j.o

Likewise, we have

(o) plio)
D (AYVBY7 —

jo

(o) plio)
> (AY7B)7 —

j.o

K _ _ s (i
T 2L )L AL N
b

N DL e (L ) LD () jad NI el
a (61)

K _ _ i s
—WDL" g (L (L@ () AN 1= lima,
a

By BY”) = —AN Z((m) DL 00 (L () a1 )
b.j

e T N T L0 = ),
a,j

(62)

MBI = ( uN — (=N £ Z((L(“ DL 0oy L ) m—bm—
(_)L){b i} N 1 {b—j}
_; k—1 . _ I—1 '
N = (=N aZj:(L (AM)aj (L) = DL (W) m—a.m—j
(—ayN-1-li-a) ,li-a)
AA(‘«/'U)ngU)) — _WZ(LIC 1()\)(L()\) J))jb(Lli (//L))m b
(= )»){] b} N 1- {J b}
+ ( )»)N Z(Lk 1()\))jll(l‘l I(M)(L(/'L) J))m jsm—a

(- )L)N I-{a— j} {a J}
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(63)

(64)

1046
plio) plio) _ gGo) 4oy _ _ K LKL ONL D) — J)) i (L li=b} N=1={j=b)
> (BY7 By 374 = i 2T V@) = I LT )y
o KA
‘ ) ) e
+ 5w 2T W)ja(@ ) = DL g a Tl
a,j
Defining
r M Y S o) 400 o) glio) | glio) glo) _ 4D 4 o)
1= j{:( Ay =By By A+ BBy = AFTALT),
j.o
then
Iy= ) 1, L G0l (L () jpa 0= N )
b.j
+ ) WO, L )] jea U el
a.j
= D L)) (L ) a0 N )
b.j
=Y L0 (LT () j g AN T Tl
a,j
= DL b o (@ ) I N )
b.j
+ D L 00)a (L)) AN T U,
a,j
Hence
=Y (005 = EE 01 ) W G0
b.j

. (,\{b—j}MN—l—{b—j} _ ,\N—l—{./—b—l}u{j—b—l}> _

Noticing that {k} + {—k — 1} = N — 1 holds for any integer k, we get I = 0.

Similarly,
p = OO 1N S G glor  Go) glio) | 4G gl _ 4G0) glio)
2=TZ 1 2 T3 s T4 1 T4 3
j.o
= > (@ 0Dpers = s 1) T i
b,
: <(_/\){b,j}MN,1,{b,j} _ (_/\)N,l,{j,b,l}u{j,b,”) —0.
Therefore,

—{tr(L(A)%), tr(L =——/1-—
G, et = 55— 5T =
The theorem is proved. [
5. Expressions for conserved integrals

Expanding tr(L¥ (1)) as a Laurent series in A like

o0
o
w(LXG) =) g2
Jj=0

(65)

(66)

(67)

(68)
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then Theorem 4 implies that {gl.(k), g;k)} = 0 for all positive integers i, j, k.

Supposing the eigenvalues of L(A) are vi(L), ..., vy (L), then

N
w(LE ) =Y vk, (69)
j=1
On the other hand,
N . .
det(ul — L)) =Y (=1 s;ypN (70)
j=0

where s = 1,
= D v ) (1)
I<ji<-<jk<N

is the sum of all the determinants of the principal submatrices of L()) of order k.
Using the fact lim) _, oo det(ul — L(A)) = det(nl — J) = ,uN — 1, we can perform the expansion

400
k) = (DY AT (DN ey (k=12 ). (72)
j=1

Since the set of symmetric polynomials

N

k
Zvj|k=1,2,...,N} and { > ujl...ujk|k=1,2,...,N}
=1 1<ji<-<jk<N

can be represented by each other, {fok), Qfg.k)} = 0 holds for all positive integers i, j, k.

Lemma 3. (i) s (—X) = s (A) for any positive integer k. (ii) (‘E(ik) = 0 unless j = kmod N. Moreover, when N is
even, Qfg-k) =0if kis odd.

Proof. By (22),
L) =K 'LOY'K =K 'L(-0)"K. (73)

Hence (vi(—2A), ..., vy (—A)) is a full set of eigenvalues of L (1), which implies that (i) holds.
Again, from (22), L(wA) = o 1L N2~ Hence (0 'vi(L), ..., 0 Yoy (1)) is a full set of eigenvalues of
L(w)). This means that

sk(@)) = 0 sp(h). (74)

By the expression (72), Gg.k) = O unless j = kmod N.
According to (74), when N is even,

sk(=2) = sk (@"2) = 0N Py (1) = (= D5 (). (75)
Comparing with (i), we get sx (1) = 0 if k is odd. The lemma is proved. O

The ¢©°s are polynomials of {¢;q,hi¢ | i = 1,...,N;a = 1...,r}. In general, the full expressions are very
complicated. Here we first consider their lowest (i.e. quadratic) terms. Then consider the full expressions for special
cases which will lead to the Hamiltonians H* and H'.

Now write L(A) = J+ M (A) where each entry of M (%) is a polynomial of {¢;«, $ie} of degree > 2. Suppose R is a
principal submatrix of L (1) of order k (k < N — 1) with non-vanishing quadratic terms of {¢;, ¢i«} in its determinant.
Considering the expression for J, the indices of the rows and columns of R in L(A) mustbe (j, j+1,...,j+k—1)
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ff)rj—i:k <N+land(,....k+j—N—-1,j,...,N)for j+k > N+ 1. Let ﬁaﬁ = Rjyy—1,j+p-1; then
R = (Ryp)kxk has the form

R=(Mjja—1 jrp—1 + 8at1,p)1<a. ks (76)
and

detR = detR = (—1)*"'M ;41 ; +hot. (77)
Here h.o.t. refers to the polynomial of {¢;q, q_ﬁ,u} of degree > 2. Hence,

N
D'k =&iv+ Y Mjpxo1j +hot (78)
Jj=1

fork=1,2,..., N — 1. Itis easy to see that (78) is also true for k = N since sy = det(J + M(1)).
Define

SO = (D A D)) + (0, A ), AV =i( B, A D)) — (D), A D). (79)
From (35),

N
ZMj-&-k—l,j =
j=1

- Z Pl PNZ( . ,,Ak—1+PN¢,-+k_1>+<—1>k+f’”<¢j+k_1,Ak‘””’V@m—n)

o N N-1 _ _
DS AT T (@ kb — (— 1) Bkt abim— o)

a=1s=0 j=1 =0

r

z| =

k— 1+pN>0
N
—c > A‘k_pNZ<1+(—l)k+”N)(¢ ket AN 3y (80)
P j=1
—1+pN=0

When both N and k are odd, 1 4+ (—1)¥*PN =£ 0 if and only if p is odd. Let k = 2] — 1, p = 2q — 1; then

_ —Qg— 2l—2+(2qg—1)N
Suoi=k Y aTAHIC 1>NZS§m+2’,““’ "™ 4 8y 1y +hot. 81)

q =
2—2+Q2¢—1)N>0 j=l

Since N is odd, in the first summation, 2/ — 2 + (2g — 1)N > 1 should hold, i.e. I — N+3 + gN > 0. Supposing
[ — NT” =(p—¢q)N + { N+3] where p € Z, then p should satisfy p > 0, and

21—2+(2q—1)N=2<l—NTH>+2qN+1—2pN+1+2{l—NT+3}. (82)
Rewriting / as k, p as p, we get
Soh—1] = K Z AT 2{k N”} PN i Sfliﬁljlupm + dk—1,§ +hoo.t. (83)
=1
Likewise, when N is odd, the even term ijs
P— Z)\ 2-20k=1)=2pN Z SO +hot. (84)

When N is even,

s2k—1 =0,
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_ 2k—2}+1+pN
szk——KZ)n —(2k-2}— pNZSE{m-iQk} - jp ) — &, N +hoo.t.

Now we redefine the conserved quantities as follows.
For odd N, we define

1 N
k (2k) @Uk=1D+142pN)
E® = —€2+2{k 2N = 5 2 § TN fhot (k=12 (N = 1)/2),
N N43
Ay 1 ok 1 -2 +1+2pN)
E @ - S . h. L. k:1,2,...,N 1 2’
d 2 242 YE N 2; jmA2k—2—j +hot. ( (N +1)/2)

and then the above two expressions can be written uniformly as

1
K _ @{k=1}+1+2pN) _
E}J)_EZ S +hot. (k=1,2,...,N).

For even N, we define

k (2k) ({2k—1}+pN)
EY = —ez+{2k NipN =5 Zsjmﬂk 7 +hot (k=1,2,...,N).

Now we express the Hamiltonians H* and H' in terms of the E;k)’s. Then the E;k)’

conserved integrals of the Hamiltonian systems given by H* and H'.

Theorem 5. The Hamiltonians in (48) and (49) are

M N (1 (N ) N
H' = —-E H =——(=(]]A, tr(LN(O))) .
[V J
2 \N \}4

Both H* and H' commute with all E;k) s, and {H*, H'} = 0.

Proof. When N > 3,

N-1

() =)

j=1

Mjj 1+ Mjj
Mjt1j  Mjt1j+1

My, My
1+ My Myy

Z M;jj Mk
1<j<k<N Mkj Mk
k—j=2, (j,k)#(1,N)

N
_ Mjj My
B _ZMHI’j * Z Myj Mk
j=1 1<j<k<N J
When N = 2,
My 1—|—M12 My M
s2(A) = My + Mp1) + —
2() ‘1 + My Moo —(Mi 21) My My

By (80),

1
_ZMJHJ = —KA” 225531“ j oG,

1049

(85)

(86)

(87)

(88)

(89)

s are a set of involutive

(90)

oD

92)

93)
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and by (39),

r

N—-1
Mjk = _)\ lzzw(k /)l(¢ja¢m ko — ¢ja¢m ka) + oA~ l)
=0

a=1

= —ikr1a0 ik 00,

Jsm—

Hence, if j # k,

Mjj Mjk| _ 2,2 |Ajm—j 0 N O S )
’Mkj M| = KA 0 Akm—k +o(A77) = —k"A""Aj m—j Ak m—k +0(A77).
Thus
Mjj My _ 1 2, - ©) o 2 )
4 Mkj Mkk - A ZA] m—j Z(A]m ]) +0()\' )
1<j<k<N

= ZA ZZ(A?,L o0,

The last equality holds because Aﬁ.(?,)( is anti-symmetric for j and k. Using the expansion (72), we get

N
2) (n 2 0) 2
& = ZS/mH -j Z(Ajm J)

j=1

Comparing with (48), we know that H* = — 1 Qf(z) E(l)
Now we prove the ¢-part. By (35),
P r N-—1 o
LO) =T~ DO oINS 0 (Hy HY + HoHY) 2'K
a=1 [=0
and
K r N-—1 ) _ _
LO)jk = 8js1k = o TN @ jabm—ka + Gjabm—k.a)

a=1 =0
’

=841k =K )y Bjabm—ta + PjaPm—k.a)Sj 1k
a=1
(1)
= (l —KS] ] ])8]4_1,](.
Taking the trace, we get

N N -1
tr(LN(O))le_[< — kS5 ]) Nﬂ(l-@,)_NF (]_[Aj) :
j=1

j=1 j=1

Hence, according to (49),

H=——(=(]]4;])ex (0))) .
2c \N \;_1 "

(94)

95)

(96)

o7)

(98)

99)

(100)

(101)

According to Theorem 4, H* and H' commute with all E;.k) ’s. In particular, since H* = —E(()l), we get {HY, H'} = 0.

The theorem is proved. [
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6. Independence of the conserved integrals

Theorem 6. {E;k) |k=1,...,N;j=0,...,r — 1} are functionally independent in a dense open subset of R*N".

Proof. Since the E;k) ’s are defined in different ways for odd N and even N, we shall prove the theorem for these two
cases separately.

First suppose N is odd. By (88),fork=1,...,N;j=1,...,N; p=0,....,.r—L,a=1,...,r,

aEE,k) 2k—1+42pN
P )2k +2p Gmt2h—1—ja + (102)
a¢ja
where - - .7 refers to the high order terms of the ¢4 ’s.
Let J be the Jacobian determinant of
M O 7@ @ (N) (V)
(Ey s - E.Z L Ey .. EZ By, END)

with respect to

(‘511’~-~a¢_’1r’(/7)21a--~v¢_)2ra--~7¢_7N1’--~7¢_’Nr)~

Take Py € R2N" with coordinates ¢jo = € {j — m} where € is a small real number. Then, at Py, for fixed k and j,

(k)
AE
t =e{2k—j—1} W +o0(e) (103)
a(p/cc p=0,...,r—1

a=l,...,r

2%k—142(@—1)N

where Wk:()»/S Ji<a,p<r fork =1,..., N. Then

[3(Po)| = | det (ediag(W1, ..., Wy)) |

0 (N-DI, (N-21I, --- 2I, I,
21, I, 0 - 4L 31,
. |det _ . . . . +o(eN")
(N=-2I, (N=-3)I, (N—-HI, --- 0 (N-DI,
r N2 N ] r
= 1™ | T]n [T @ - EN’V”(N— D| +o0™)#£0 (104)
=1 I<i<j<r
when € is small enough since A%N S, AEN are distinct and non-zero. Here I, is the r x r identity matrix. Since J is

a real analytic function of {4, q_S ja),J # 0in a dense open subset of RZN" This proves the theorem for odd N.
Now we prove the theorem for even N. By (89), fork = 1,...,.N;j=1,...,N/2;p =0,...,r — L;a =
1,...,r, we have

k
%{7‘: = )‘*¢{J¢2k7]}+pN¢m+2k—l—j,a +...,
8E57k) {2k—1}+pN 7 e
% = Ay PR bmsok—1—ja+ .
Take Py € R*N” with coordinates @joa = €Bj_m where
— ifl <k <
P = {l{f{k ! }1;r+1’1), 11{ 11v72k+_1 ];/13’5 N, (106)

and ¢ is a small real number. At Py, the Jacobian determinant of

() M @ @) (V) (V)
(ES", ... EDLEY, L EP L ENM . EY)

r—1° r—1°
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with respect to

(P11 e ey Plrseees ON/2ds e ooy ON/2rs Blls s Blrs v s ON/2Ls - ooy ONJ2r)

is

I3(Po)| = |det (ediag(Zy, ..., Zny2, Z1, - .., Zny2) (bl j=1,..N) | + o(eM") (107)
where Z; = (MY, oy o fork=1,....N/2and by = ;1. Let B = (by;): then
BN Bn-1 Bn—2 -+ B2 Bi
B2 Bi By - Ba B3
B — BN—2 Bn—3 Bn-4 -+ Bn  Bn-1 (108)

BN  —Bn-1 Bn—2 - B2 =B

,31\/.—2 _,B}\’—3 ,31\7.—4 ,3.1\/ —,3;\/—1

since B; = (—=1)/B; for j = 1,2,..., N. Hence

Bv-1 Byn3z - B BN Bn—2 - P2
\det B| = 2N/ B Bn-1 - B3 B2 By - Ba
€ = . . . . . .

,31\/.—3 ,31\/.—5 ,BN.—I ,BN.—Z /31\7.—4 ,B.N
1

1
=2N/2. ENN/2 : ENN/H(N +2) = 2N22NN=I(N +2) £ 0. (109)

Again, as for odd N, J is not zero in a dense open subset of RZV" for even N. This means that {E;k) | k =

1,...,N;j=0,...,r—1} are functionally independent in a dense open subset of R2N" The theorem is proved. O

The main results in this paper are summarized as follows.

Theorem 7. The systems of ordinary differential equations (39) and (40) are Hamiltonian systems with Hamiltonians
H* and H' given by (48) and (49), and {H*, H'} = 0 under the Poisson bracket (45). They are Liouville integrable in
the sense that there are Nr involutive conserved integrals which are functionally independent in a dense open subset of

the phase space R*N". Each solution of (39) and (40) gives a solution of the two dimensional Aéi)v C,(,l) or D,(lzil Toda

equations. When N = 2n+ 1, m = 0, (36) gives a solution of the A;i) Toda equation. When N =2n+2,m =0, (37)

gives a solution of the C,gl) Toda equation. When N = 2n, m = 1, (38) gives a solution of the D,ﬁ] Toda equation.
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